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ABSTRACT 

First-order necessary conditions of optimality f o r  many problems in 
optimal control, nonlinear programming, and the calculus of variations can be 
obtained by transcribing these problems into a simple canonical form. 
dimensional space this form reads: 

(1) Basic Problem: 
functions and S2 a given subset of En. 
all x E ~2 satisfying r(x) = 0, f(x^) - < f(x). 

is of the form: 
(2) If 
vector + E Emtl with +O < 0 such that 

In finite 

Let f : En --f E', r : En -Em be continuously differentiable 
Find 2 E C2 such that r(G) = 0, and, for 

_ _  Roughly, the most general necessary condition for the Basic Problem (1) 

is an optimal solution to the Basic Problem (1), then there is a nonzero. 

- m .  

i= 1 
( $o Vf(g) t Z 4' Vri(G), 6x) - < 0 for  all 6x in a convex cone which "approxi: 

mates" the set S2 at the optimal solution 2. 

such as when the gradients Vf(g), Vr1(2), . . . , orm(;) a re  linearly dependent, lead- 
ing to a need f o r  auxiliary necessary conditions for these cases. 

In this paper the special case of linear dependence caused by the gradient 
Vf(G) being zero is investigated. A new condition, involving second order partial 
derivatives of the equality constraint function r( e ) ,  and first  order partial deri-  
vatives of the equality constraint function r( . ), This new condition 
holds for  all perturbation vectors in the convex cone associated with the generel 
(first order) necessary condition (2)  - a set which is larger than the one usually 

This general necessary condition can be satisfied trivially in some cases, 

. 

is obtained. 

considered in obtaining second order conditions. 
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Second Order Conditions of Optimality for Constrained 
Optimization Problems in Finite Dimensional Spaces 

SUMMARY 

Introduction: In the last few years it has been shown [l, 21 that problems of the 
calculus of variations, nonlinear programming and optimal control can be treated 
in a unified manner as  far  a s  necessary conditions of optimality a re  concerned. 
This was done by establishing that all these problems can be transcribed into a 
simple canonical form, for which necessary conditions were developed. Special- 
ized necessary conditions of optimality for any particular problem then followed 
from the structure of the problem. 

as follows: 
1. 
functions, and let 52 be a subset of En. 
and (ii) for every x in 52 with r(x) = 0, f(x) > f(G). 

min(f(x) Ir(x) = 0, q(x) < 0 )  , where f:En-+Ef, r:En+ Em and q:En+ Ek are  continu- 
ously differentiable, is recognized to be the Basic Problem (1) with R = {x lq(x) < 0)  . 
Examples of the transcription of discrete optimal control problems to Basic Prob- 
lem form may be found in [l] . 

Before giving the necessary condition for the Basic Problem (1) we require 
an "approximation" of the set 52 at a given point. 
2. 
the constraint set R at  x if for any collection { 6x1, * .  . , bXk] of linearly indepen- 
dent vectors in C(2, R) there exists an E > 0 (possibly depending on G, 6x1, : . . , 6xk)J 
and a continuous map P(  ) from the convex hull (co) of (0, 6x1, . . ., 6xk) into 
S2 - such that P (  6x) = E 6x t O ( E  6x) where I I O(E bx) I I/ 11. E 6x1 I 4 0 as E --t 0, uniformly 
for 6xe CO(O, 6x1, . , . , 6xk} . 
following one. 
3. Fundamental Theorem: If 2 is a solution to the Basic Problem (l), and 
C(x, 52 
.$-=A$-. ,, . . . $ J ~ )  in Em'1 with Go C 0 such that for every 6x in the closure, 

For finite dimensional problems the canonical form mentioned above reads 

n Basic Problem: Let f : En+E',  r : E +Em be continuously differentiable 
Find a vector E 52 such that: (i) r(2) = 0 

Thus, for example, the usual Nonlinear Programming Problem, 

1 . -  

Definition: A convex cone C(E,Q) will  be called a conical approximation of * 

The most general necessary condition fo r  the Basic Problem (1) is the 

is a conical approximation of 0 a t  2, then there exists a nonzero vector 

- 
* d  

C(2,0), of C(G,R): 

4. 
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Note that the Fundamental Theorem ( 3 )  may become degenerate in two 
The first occurs when +O must be chosen to be zero, and hence no infor- 

This 
ways. 
mation about the cost function f( 0 )  enters into the necessary condition (4). 
most often occurs when there is only one x E $2 satisfying r(x) = 0, and may be 
avoided by introducing a regularity condition, such as the Kuhn- Tucker constraint 
qualification, on r( 0 ) and a. The Fundamental Theorem also becomes degener- 
ate when the vectors Vf(z), Vrl(f) ,  . . ., arm(;) a r e  linearly dependent since then 

m 
one can always choose a + # 0 which satisfies +OVf(;) + Z 

i= 1 
hence (4), without reference to the optimality of 2. 

desirable to have a second-order necessary condition. 
cases when a second-order condition is also meaningful. 
C(z, S2) there a re  “critical” vectors y which satisfy (Vf(G), y) = 0 and 
(Vrl(x), y) = 0 
these vectors relations of the form: 

5. 

or 

6. 

1Ci Vri(G) = 0, and 

When a degeneracy in the first-order condition occurs, it is obviously 
However, there a re  other 

Thus, suppose that in 

. A  

i = 1, . . , m. Then, under suitable assumptions, one obtains fo r  

(3 Y 2 0 
T a2f 

y - 5  ax 

(x) - r; u 2 (XI )  Y 2 0 y (-+x)- 22 x - 
ax i= 1 ax i= 1 ax 

2 m i a Z r i . +  k i a q  2 i  A ~ a f  A 

2 

(see, fo r  example [ 3 ] ,  [4] ). 
In this paper we consider a special case of degeneracy in the first-order 

condition (4), namely the case when Vf(2) = 0, which causes the vectors Vf(;), 
Vrl(G), Vrz(G), However, we shall not re- 
strict ourselves to critical directions only as  in [ 3 ] ,  [4], and, instead, we shall 

obtain a condition similar to (4), but with 6x - (f)  bx playing the role of 

. . , arm(;) to be linearly dependent. 

Ta2f 

ax2 
(Vf(+, 6x). 

11. A Second-Order Condition: Let us assume that is a solution to the Basic 
Problem (1) such that Vf(2) = 0, and suppose that f (  0 )  is twice continuously dif- 
ferentiable. Then to the Fundamental Theorem ( 3 )  we can add the following new 
second-order condition: 
7. is a solution to the Basic Problem (1) such that Vf(G) = 0, 
and C(2, S2) is a conical approximation of S2 at the point G, then the ray R, 

8. R =  { Y E E  I y =  ~ ( - l , O , O , O . e . , O )  @ L O }  

has no points in the interior of the set  L defined by: 

Theorem: If 

A m t l  

7 

An equivalent statement of the Fundamental Theorem ( 3 )  is that the ray R 
given by (8) has no points in the interior of the set Lo defined by: 



Since L 
essence of the statement of Theorem (3 )  in the original form given. 

there is a curved surface which separates R and L - rather than a plane. 
fact a parboloid of the form: 

is also a convex cone, Lo and R must be separated, which is the 
0 

Since L defined in (9) is not in general convex it is natural to inquire if 
In 

11. with Lo < 0 
N 0 0  i i 2  
g,(y)= x Y + x ( Y  1 - i= 1 

is the logical candidate, which, on substituting Y E  L gives the following quad- 
ratic in dx, 

We a re  thus led to the following consequence of Theorem (7). 
13. Theorem: If 2 is a solution to the Basic Problem (1) such that V f ( f )  = 0, 
and C(G,!i2) is a conical approximation of 0 at 2, then there is a nonzero vector 
X E  Emtl with A'< - 0 such that for every 6x in C(;,!i2), 

0 15. Moreover, if the ray R (8) is not a boundary ray of the set L ( 9 ) ,  X may 
be taken as  -1. 
16. 
hO = 0. 
fication (15) allows a nontrivial statement f o r  many problems. 

Remark: The relation (14) can always be satisfied trivially i f  we allow 
While there a re  cases in which Xo must be chosen to be zero, the quali- 

Thus, let u s  again consider the Nonlinear Programming Problem, 

17. 
n m  , where f : E-E' is assumed twice continuously differentiable, and r : E + E  

q : En+ Ek a re  continuously differentiable, 
i Define I(x) = { i f  (1, . , ., k} I ql(x) = 0)  and I C(x) = {yl (Vq (x), y > (  0 i c  I(x)).  

We now' obtainAthe following condition from Theorem (14). 
Theorem: If x is a solution to  the Nonlinear Programming Problem (17) 18. 

such that Vf(2) = 0, IC(2 )  i s  not empty, and the Kuhn-Tucker Constraint Qualifi- 
cation [ 5 ]  i s  satisfied, then there is a vector X in Em such that 

. 111. Conclusions: We have shown in this paper that, when first-order necessary 
conditions of optimality fail because the gradient of the cost function at  the optimal 
point is  zero, it is possible to replace these first-order conditions with a 
condition. This new condition, involving second-order partial derivatives of the 
cost function and first-order partial derivatives of the equality constraint func- 
tion, holds for all perturbation vectors in a set which is larger than the one 
usually considered in obtaining second-order conditions. 
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